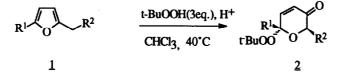
Acid-Catalyzed Oxidation Of Furan Derivatives By t-Butyl Hydroperoxide


Roberto Antonioletti, Luca Arista, Francesco Bonadies, Ludovica Locati, Arrigo Scettri*

Centro CNR di Studio per la Chimica delle Sostanze Organiche Naturali, Dipartimento di Chimica, Università "La Sapienza", p.le Aldo Moro 5, 00185 Roma, Italy

Abstract: the unusual reactivity of t-butyl hydroperoxide under acid-catalysis allows the easy conversion of furan derivatives into 3(6H)-pyranones.

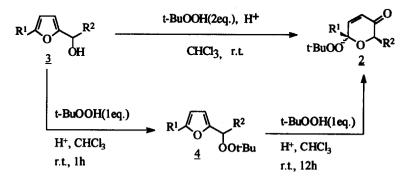
t-Butyl hydroperoxide (t-BuOOH) is a reagent employed in a great variety of oxidative processes, which, because of its unreactivity towards most organic compounds, usually require metal catalysis (V+5, Mo⁺⁶, Ti⁺⁴, etc.).¹

In the course of recent investigations devoted to the achievement of new oxidative procedures involving non-conventional catalysis², we have found that t-BuOOH exhibits unusual properties as mild oxidant of furan derivatives in mildly acidic medium. In fact, furans <u>1</u> submitted to treatment with an excess of t-BuOOH (3eq.) in chloroform solution at 40°C in the presence of a catalytic amount of camphorsulphonic acid (10%), are smoothly converted into 3(6H)-pyranones <u>2</u>.(Table 1).

Table 1 - Oxidation	of 2,5-dialkylfurans	by t-BuOOH
---------------------	----------------------	------------

Entry	R ¹	R ²	Reac.Time	Yielda), b)
1	Me	n-C4H9	24h	50%
2	Me	n-C7H15	23h	48%
3	Me	n-C9H19	23h	71%

a) The reported yields refer to isolated, chromatographically pure compounds.


b)All the structures have been confirmed by IR and ¹H-NMR data. All new compounds have given satisfactory elemental analysis.

The formation of 2 takes place with high stereoselectivity, as shown by the isolation of pyranones characterized by a cis relationship of R^1 and R^2 substituents.

The mechanistic aspects of the unusual conversion 1 - -> 2 have not yet been investigated: however, it seemed conceivable that it could involve 2-furyl alcohols, as intermediates: as known, the typical procedure for the synthesis of 3(6H)-pyranones is based on the oxidation of compounds of type 3 with a variety of reagents such as pyridinium chlorochromate, 3 m-chloroperbenzoic acid⁴ etc.

In fact, submitted to the usual treatment at room temperature, compounds 3 are changed into the expected products 2.

Table 2 - Oxidation of	urvl alcohols 3 to 3(6H)-pyranones 2	hv t-BuOOH

Entry	Rl	R ²	Yield ^{a)h})
1	н	n-C4H9	13%	(>95/5)¢),d)
2	Me	n-C4H9	67%	(85/15)¢)
3	Ме	n-C ₈ H ₁₇	76%	(8 9/11)¢)
4	Me	n-C ₁₀ H ₂₁	69%	(90/10) ^{c)}
5	Et	n-C ₄ H ₉	57%	(90/10) ^{c)}

a) The reported yields refer to isolated, chromatographically pure compounds.

b) All the structures have been confirmed by IR and ¹H-NMR data. All new compounds have given satisfactory elemental analysis.

c) Values in parentheses refer to trans/cis ratio.

d) A significative process of decomposition occurs in the course of the purification by silica gel column chromatography. It has to be noted that under suitable conditions, t-BuOOH(1eq) for 1h, the intermediate mixed peroxides 4 can be obtained with high efficiency and their appreciable stability allows their easy isolation and purification by routinary procedures (Scheme 1).

The ready availability of peroxides 4 has allowed the achievement of a new methodology for the synthesis of 2-furyl ketones, not so easily accessible through the routes at present employed.⁵

In fact compound 4, submitted to treatment with a strong excess of 1,8-diazabicyclo-(5,4,0) undec-7-ene (DBU) at room temperature for 3 hrs, affords the corresponding ketone 5 with satisfactory yields (Table 3).

$$R^{1} \swarrow_{O} \xrightarrow{R^{2}} OH \xrightarrow{t-BuOOH/H^{+}} R^{1} \swarrow_{O} \xrightarrow{R^{2}} OH \xrightarrow{DBU} R^{1} \swarrow_{O} \xrightarrow{R^{2}} O$$

Table 3 - Conversion of 2-furyl alcohols 3 into 2-furyl ketones $5a^{(a)}$

Entry	R1	R ²	Yield <u>4</u> b)	Yield 5^{b}
1	Н	n-C₄H ₉	80%	58%
2	н	n-C ₈ H ₁₇	91%	74%
3	Me	n-C ₄ H ₉	87%	45%
4	Me	n-C ₈ H ₁₇	73%	59%
5	Me	n-C ₁₀ H ₂₁	_c)	52%
6	Et	n-C4H9	_c)	61%

a)Compounds 4(5 mmoles), without any previous purification, are treated with DBU (5eq.) till disappearance of starting materials. After the usual work-up crude 5 are purified by column chromatography on silica gel.

^{b)}All the yields refer to isolated, chromatographically pure compounds and are calculated on starting materials 3. All the structures have been confirmed by IR and

¹H-NMR data and by comparison with authentic samples.

 $^{c)}$ In these cases compounds <u>4</u> have been used without any previous purification.

Experimental: In a typical procedure furan derivatives 1 (or 2) (1 mmole), t-BuOOH [3 eq. (3M isoctane solution) (or 2 eq. for 3)], Camphorsulphonic acid (10% mol.) in CHCl₃ solution are stirred at 40°C (or at room temperature for 3). The reaction is monitored by TLC and interrupted by addition of Na₂S₂O₃ (0.1 M solution, 3eq. or 2 eq. for 3). After the usual work-up, the crude products 2 are purified by column chromatography on silica gel by elution with n-hexane/dietalyl ether mixtures.

Reference

- Sheldon, R.A. J. Mol. Catal. 1980, 7, 107, Tolsikov, G.A.; Dzmemilev, U.M.; Yurev, V.P. J. Org. Chem. USSR 1971, 8, 1204 Sharpless, K.B.; Verhoeven, T.V. Aldrichimica Acta 1979, 12, n°4 Sharpless, K.B.; Michaelson, R.C. J. Amer. Chem. Soc. 1973, 95, 6136 Teranishi et al., J. Amer. Chem. Soc. 1979, 101, 179 Rossiter, B.E.; Verhoeven, T.R.; Sharpless, K.B. Tetrahedron Letters 1979, 4733 Katsuki, T.; Sharpless, K.B. J. Amer. Chem. Soc. 1980, 102, 5974 Sharpless, K.B.; Woodard, S.S.; Finn, M.G. Pure & Appl. Chem. 1983, 55, 1823
- 2. Antonioletti, R.; Bonadies, F.; Locati, L.; Scettri A. Tetrahedron Lett. 1992, 33, 3205
- 3. Piancatelli, G.; Scettri, A.; D'Auria, M. Tetrahedron Lett. 1977, 25, 2199
- Lefebvre, Y.; Meddwar, G.; Laliberte, R. J. Med. Chem. 1973, 16, 1084
 Lefebvre, Y. Tetrahedron Lett. 1972, 136
- Gilman; Callowey, J. Amer. Chem. Soc. 1933, 55, 4197
 Brorsche, W. et al., Ber. 1938, 71, 957
 Maxim, N.N. C.A. 1931, 25, 513
 Scholz, S.; Marshall-Weyerstahl, H.; Weyerstahl, P. Liebigs Ann. Chem. 1985, 10, 1935

(Received in UK 1 July 1993; accepted 3 September 1993)